
MOLECULAR-STATISTICAL DESCRIPTION
OF NONUNIFORMLY DEFORMED SPECIMENS.
1. FORMULATION OF THE PROBLEM AND
METHOD FOR SOLVING IT

I. I. Narkevich and A. V. Zharkevich UDC 536.758+539.311

To describe the structural and mechanical properties of actual deformed crystalline specimens with de-
fects (thermal vacancies), simultaneous use is made of the method of correlative functions of the parti-
cle and vacancy distribution over the volume and the method of thermodynamic functionals, which
implies solution of the corresponding variational problem in the final stage of statistical investigations.
For the first time the tensor of microscopic deformation of the lattice is introduced in governing equa-
tions of statistical physics as internal field parameters of the system. As a result, prerequisites for a
statistical solution of problems of elasticity theory with simultaneous description of the structure and
mechanical characteristics of the elastic properties of the specimens are created.

Introduction. Let us use, as a basis, results obtained in the development of a two-level [1] molecular-
statistical description of inhomogeneous media that consists in simultaneous use of the methods of correlative
functions of Bogolyubov−Born−Green−Kirkwood−Yvon (BBGKY, see [2]) and L. A. Rott (the method of con-
ditional correlative functions [3]) and the method of thermodynamic functionals [4]. These methods are inde-
pendent from the point of view of their initial principles and therefore lie at the basis of two quite autonomous
statistical directions in contemporary physics. The methods of correlative functions are predominantly used in
describing homogeneous systems; in particular, in the theory of the bulk properties of liquids the method of
integral equations [5] is widely known, due to which the statistical theory of liquids is just as good as the
well-developed theories of gases and perfect crystals. The method of thermodynamic functionals, which implies
solution of the corresponding variational problems, is used to study inhomogeneous systems, for example, in
the theory of heterogeneous systems with a plane or spherical interface [4, 6].

In both the method of correlative functions and the method of thermodynamic functionals the problem
of closing is central. In the first case, it is necessary to close down at some equation an infinite system (chain)
of linked integro-differential equations for the correlative distribution functions of the particles of the system in
the volume V, while in the second case it is necessary to terminate infinite series that determine the corre-
sponding thermodynamic quantities, for example, the free energy of an inhomogeneous system. It is known
that, if one and the same approximation is taken in each of these methods to solve the problem of closing, and
the termination of infinite systems or series is always carried out, to a certain extent, rather arbitrarily [1, 5],
the results in the indicated methods turn out to be mismatched [1, 7]. In the case of crystals with defects and
multicomponent systems, there also occurs the no less important problem of normalization of the correlative
functions of mixtures, so that in this direction, too, one has to make use of different approximations, for exam-
ple, the Bragg−Williams and Kirkwood approximations and the quasichemical approximation [8-10].

In the approach developed, all correlative functions of a condensed medium are represented in the form
of a product of two functions. One of them describes the microdistribution of particles within unit cells, into
which the entire volume V is mentally subdivided (the method of conditional distributions [2]), and in closing
is approximated according to the method of average-force potentials [3]. The other, which describes the distri-
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bution of the particles of the medium averaged over the unit cells, is a normalization factor for the function of
the first type, so that it reflects macroinhomogeneities in the system. These functions in themselves are not
subjected to any approximation in solving the problem of closing. Expressions for them are obtained by vari-
ation of the free-energy functional by pair, triple, etc. correlations [10]. As a result it has become possible to
practically realize the well-known Bogolyubov statement that higher-order correlative distribution functions of
particles (and vacancies) are functionals of lower-order ones.

Description of a Statistical Model of a Uniformly Deformed Linear Specimen. Let us investigate
the structure and elastic properties of crystalline specimens that have the shape of thin rods of length L0 and
cross-sectional area S0 in an undeformed state (Fig. 1a).

To produce uniaxial extension or compression, we apply forces F
→

 and F
→∗  that are equal in magnitude

and opposite in direction to the ends of the rod (Fig. 1b). We proceed to a description of a statistical model
that corresponds to the considered problem of uniaxial extension (compression) in elasticity theory. For this
purpose, we place a deformed specimen of length L in a force field that is a potential "well" in the form of a
trapezoid (Fig. 1c). The parameters of the latter (∆, α) that determine the shape of the potential U(x) must be
such that the resultant force of the volumetric forces distributed over a thin layer of thickness ∆ near the ends
is equal to the tensile (or compressive) force F:

  F = ∫ 

∆V

 


dU
dx




 ρ0dV = ∫ 

x2

L

 kρ0S0dx = kρ0S0∆ . (1)

Here ρ0 is the average density of the material near the ends of the rod, i.e., at the attaching points in tensile
testing machines or presses.

We take into account the fact that, in the method of conditional distributions, the entire volume V of
the statistical sum of N particles is mentally subdivided into microcells [5] whose number M is larger than the
number of particles N [1]. The centers of these cells for simple molecular systems form a face-centered lattice
with a certain concentration of vacant nodes to be determined. Consequently, having performed the procedure
of mental subdivision of an undeformed specimen of length L0 (Fig. 1a) into microcells, we will describe the
stressed state of a deformed specimen of length L using the field of the microscopic deformation tensor λαβ

Fig. 1. Scheme of the model of the uniaxially deformed state of a speci-
men: a) undeformed linear specimen; b) nonuniformly deformed linear
specimen; c) force field in which the deformed specimen is placed (I, po-
tential well in compression; II, potential well in extension).
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that determines the material gradient [11-13] of the displacement vector u→ of the particles of the medium (in
this statistical method, the role of the particles of the medium is played by microcells of volume ω whose size
is comparable to the size of the particles (molecules) of the system) [14, 15]:

 λαβ = 
∂uα

∂xβ
 ;   α, β = 1, 2, 3 , (2)

where x1, x2, and x3 are the coordinates of the centers of the particles in the initial, i.e., undeformed, specimen;
u1, u2, and u3 are the projections of the displacement vector u→.

For the one-dimensional model of unixial extension (compression) discussed here, we write a definition
of the Poisson coefficient:

µ = − λ⊥  ⁄ λ ||  . (3)

The character of the distribution of N particles of the molecular system over M cells is described by a
set of occupation numbers ηl (l = 1, 2, ..., M) that prescribe the concentration field of cells occupied by one
particle and the corresponding field of vacant cells nl

b = 1 − nl (the volume ω of the microcells is selected so
that statistical states with two-particle and subsequent occupations can be disregarded). In the statistical ap-
proach developed, the sought sets of numbers nl and λl

αβ are actually internal field variables, and this means
that, to determine them, it is necessary to solve a corresponding variational problem that minimizes a certain
thermodynamic potential, for example, the functional of the free energy or the functional of the grand thermo-
dynamic potential Ω = −pV.

Closed System of Integral Equations for Correlative Distribution Functions of Particles and Point
Defects in a Deformed Crystal. We write equations that relate the distribution functions of the BBGKY
method (the functions F1, F2, etc. are defined throughout the volume of the system studied − the deformed
specimen) to the functions F11 of the method of conditional distributions (the F11-approximation). The domain
of the latter is microcells of volume ω for an undeformed specimen in which the centers of the cells form a
regular lattice with occupied and unoccupied (vacant) cells (a modified F11-approximation [1, 3]).

For this purpose, we use corresponding general expressions that are also true for a nonuniformly de-
formed specimen (see formulas (10) and (11) from [10]) and apply a scaling transformation to the space vari-
ables [14, 15] for the points of the medium in the deformed and undeformed specimens:

r~
→
 = f

→
 (r→  ) . (4)

This transformation of the variables is a generalization of the Bogolyubov λ-transform that is well
known in statistical physics and characterizes uniform deformation of the system (see, for example, [3]). As a
result of transformation (4) the distribution functions F11 of the method of conditional distributions [3] for an
inhomogeneous deformed system with vacant and occupied cells [14, 15] will functionally depend not only on
the field of the occupation numbers nl but also on the field of the components of the deformation tensor
λl

αβ(α, β = 1, 2, 3; l = 1, 2, ..., M).
The indicated equation of relation for the unary (single-particle) distribution functions F1(r→) and F

^
11 has

the following form [10] (here and subsequently we will omit the vector sign, i.e., the arrow above the corre-
sponding symbols, in cases where this involves no misunderstanding in representations):

F1 (r~l) = nl F
^

11  rl, 



nk




, 




λk

αβ



  ,   l, k = 1, 2, ..., M . (5)

Here r~l is the radius vector of a certain point A of the medium (Fig. 2) in the deformed specimen (r~l ⊂  ω~l)
while rl is the radius vector in the undeformed specimen (rl ⊂  ωl) that corresponds to it, so that the vector of
the displacement field is u = r~l − rl.

1274



The point A of the medium has the coordinates x, y, z in the undeformed specimen; therefore the vector
u of displacements of the points of the medium depends on these coordinates and describes the deformation
field u = u(x, y, z). Transformation (4) with allowance for the definition of the displacement field u can be
written as

r~l = rl (x, y, z) + ul (x, y, z) ,   l = 1, 2, ..., M . (6)

In formula (5), the braces in the arguments of the correlative function F
^

11 indicate its functional de-
pendence on the field of the occupation numbers of the cells ωk (a discrete set of numbers {nk}) and the field
of the deformation tensor of the crystalline specimen (a discrete set of components {λk

αβ}). To shorten the
representation of the subsequent equations, we will omit, in isolated cases, the braces with the corresponding
set of the numbers nk and λk

αβ.
Taking into account definition (2) for the deformation tensor and the notation in Fig. 2, we represent

expression (6) in a form that introduces an explicit functional dependence on the deformation tensor Λ̂k =
{λk

αβ} in all statistical equations that describe the structure and thermodynamic properties of a deformed me-
dium [16] (the components λk

αβ characterize local deformation of the medium in the vicinity of the center of
the cell ωk):

r~
→

l = R
→

l + u
→

l + q~
→

l = R
→

l + u
→

l + (1 + Λ̂l) ⋅ q
→

l ,
(7)

where R
→

l is the radius vector of the center of the cell ωl, i.e., the node of the lattice in the undeformed speci-
men; u→l is the displacement vector of this node in the deformed specimen; ∆u→ = Λ̂lq→l is the displacement of the
point A with the coordinates x, y, z relative to the new position of the node.

Using (7), we express the radius vector of the relative position of the two points of the deformed crys-
tal r~lm in terms of the components of the deformation tensor Λ̂ for the cells ωl and ωm; we take into account
that the vector of relative displacement of the centers of these cells is u→lm = u→m − u→l, while the radius vector of
their relative position in the basis (undeformed) lattice is R

→
lm = R

→
m − R

→
l:

r~
→

lm = r→m − r→l = R
→

lm + u
→

lm + (1 + Λ̂m) ⋅ q→m − (1 + Λ̂l) ⋅ q
→

l . (8)

Considering the problem of statistical description of the deformation of a crystalline specimen, we use
a closed integral equation for the potentials ϕ of the average forces of an inhomogeneous deformed medium
[1] that is obtained as a result of termination of an infinite chain of integro-differential equations for the cor-

Fig. 2. Scheme of the relative position of a microcell with the number l in
deformed (ω~l) and undeformed (ωl) states.

1275



relative functions F11 with single-particle occupation of the cells ω by molecules (with allowance for the pres-
ence of vacant nodes in a deformed crystal lattice [10, 14-16]):

nl exp 



− 

1
θ

 ϕlm (ql)



 = nlm

aa  ∫ 
ωm

 exp 



− 

1
θ

 Φ (r~lm)

 F
^

11
 ∗  (qm) dqm +

+ nlm
ab  ∫ 

ωl

 exp 



− 

1
θ

 ϕlm (ql)



 F
^

11
 ∗  (ql) dql . (9)

Here F̂11
∗  is an auxiliary function normalized to unity, using which the averaging over the molecular positions

in the cells ωl and ωm is performed (ql ⊂  ωl and qm ⊂  ωm). This function is expressed in terms of the sought
average-force potentials, for example,

F
^

11
 ∗  (qm) = 

exp 









− 

1
θ

   ∑ 

k≠l,m

M

  ϕmk (qm)










∫ 
ωm

 exp 









− 

1
θ

   ∑ 

k≠l,m

M

  ϕmk (qm)









 dqm

 . (10)

The function F̂11
∗ (ql) is similarly defined, while the quantities nlm

aa and nlm
ab characterize the distribution

of N molecules over all possible pairs of cells ωl and ωm from all M cells of the lattice; Nb = M − N is the
number of vacant cells. The numerical value of nlm

aa assigns, in its physical meaning, the probability that there
is one molecule each in the cells ωl and ωm, while the numerical value of nlm

ab assigns the probability of the
cell ωl being occupied by a molecule on condition that the cell ωm is unoccupied (vacant). Consequently, the
quantities nlm

aa and nlm
ab are two-cell analogs of ordinary occupation numbers. They can be interpreted as prob-

ability functions of the integral arguments l and m subject to determination that satisfy a normalization condi-
tion of the form

nlm
aa + nlm

ab = nl ,   l, m = 1, 2, ..., M . (11)

CONCLUSIONS

1. We obtained a closed system of integral equations for the potentials ϕ of the average forces that
describe the interaction of the particles of the medium in a deformed specimen and determine the particle-dis-
tribution functions in a deformed crystal with vacancies.

2. For the first time we were able, within the framework of a developed two-level molecular-statistical
description of the properties of inhomogeneous systems, to proceed to consideration of a typical problem of
elasticity theory by the methods of statistical physics. Since the basis is provided by an integral equation [9]
that contains functionals of the concentration field of the particles and vacancies and the field of the compo-
nents of the deformation tensor, the statistical elasticity theory developed is nonlocal and takes simultaneous
account of competing entropy and force factors.

NOTATION

L0 and L, length of the undeformed and deformed specimens, respectively; S0, cross-sectional area of
the specimen in the undeformed state; F

→
 and F

→∗ , vectors of the forces that extend or compress the specimen; ∆,
linear dimension of the parts of the specimen near its ends that are acted upon by the external-force field; α,
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slope of the straight line that governs the form of the potential of the external force field to the axis along
which the extension or compression of the linear specimen occurs; U, potential of the external force field that
provides the deformation of the specimen in extension or compression; V, volume of the statistical system; N,
number of particles of the given system; M, number of microcells into which the entire volume of the system
is mentally subdivided; Λ̂k, microscopic deformation tensor; λk

αβ, components of this tensor; u→, displacement
vector of the particles of the medium in the microcells; µ, Poisson coefficient; λ  and λ⊥ , relative deforma-
tions in the longitudinal and transverse directions of the specimen; n, concentration of the number of particles
in the vicinity of the lattice node; p, pressure; F1, F2, etc., chain of correlative distribution functions in the
BBGKY method; F11, conditional correlative distribution functions of particles near nodes of the lattice with
vacancies (the first F11-approximation); r

→~ and r→, radius vectors of the point of the medium in the deformed and
undeformed specimens; R

→
, radius vector of the center of the microcell in the undeformed specimen; q

→~ and q→,
radius vectors of the point of the medium relative to the centers of the cells in the deformed and undeformed
specimens; ∆u→, displacement of the particle of the medium; ϕ, potential of the average forces of interaction of
the particles (molecules or atoms) of an inhomogeneous deformed medium; Φ, paired intermolecular Lennard-
Jones potential; θ = kT ⁄ ε, dimensionless temperature (k, Boltzmann constant, T, absolute temperature, and ε,
depth of the potential well that describes the interaction of two particles (molecules) of the medium). Sub-
scripts and superscripts: 0, initial (undeformed) state; α and β, components of tensors of the first and second
ranks; 1, 2, and 3, numbers of the components of the corresponding tensors;   and ⊥ , longitudinal and trans-
verse direction, respectively; a, microcell occupied by a molecule; b, unoccupied (vacant) cell; l, k, and m,
numbers of the microcells; 11, first statistical approximation, in which all microcells are occupied by no more
than one particle (molecule); ~  , membership of the corresponding quantities in the deformed specimen;  ̂  ,
normalization to unity; *, auxiliary nature; lm, pairs of cells; aa, two microcells with the numbers l and m (or
k) are occupied by one particle (molecule) each; ab, the microcell with the number l is occupied by one parti-
cle, while the microcell with the number m or k is unoccupied (vacant).
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